+45 31 33 18 19
salg@GOmeasure.dk

Tektronix MSO56B 6 Ch. Oscilloscope

Tektronix MSO56B 6 Ch. Oscilloscope

Price on request

Input channels

  • 6 FlexChannel™ inputs
  • Each FlexChannel provides one analog signal input or eight digital logic inputs with TLP058 logic probe

Bandwidth

  • 350 MHz, 500 MHz, 1 GHz, 2 GHz

Sample rate (all analog / digital channels)

  • Real-time: 6.25 GS/s
  • Interpolated: 500 GS/s

Record length (all analog / digital channels)

  • 62.5 Mpoints standard
  • 125 Mpoints optional

Waveform capture rate

  • >500,000 waveforms/s

Vertical resolution

  • 12-bit ADC
  • Up to 16-bits in High Res mode
Categories: , Tag:

Tektronix MSO56B 6 channel Oscilloscope

Strength in numbers

Input channels

  • 4, 6, or 8 FlexChannel® inputs
  • Each FlexChannel provides:
    • One analog signal that can be displayed as a waveform view, a spectral view, or both simultaneously
    • Eight digital logic inputs with TLP058 logic probe

Bandwidth (all analog channels)

  • 350 MHz, 500 MHz, 1 GHz, 2 GHz (upgradable)

Sample rate (all analog / digital channels)

  • Real-time: 6.25 GS/s
  • Interpolated: 500 GS/s

Record length (all analog / digital channels)

  • 62.5 Mpoints standard
  • 125, 250, 500 Mpoints, (optional)1

Waveform capture rate

  • >500,000 waveforms/s

Vertical resolution

  • 12-bit ADC
  • Up to 16-bits in High Res mode

Standard trigger types

  • Edge, Pulse Width, Runt, Timeout, Window, Logic, Setup & Hold, Rise/Fall Time, Parallel Bus, Sequence, Visual Trigger, Video (optional), RF vs. Time (optional)
  • Auxiliary Trigger ≤5 VRMS, 50Ω, 250 MHz (>200 mVpp) (Edge Trigger only)

Standard analysis

  • Cursors: Waveform, V Bars, H Bars, V&H Bars
  • Measurements: 36
  • Spectrum View: Frequency-domain analysis with independent controls for frequency and time domains
  • FastFrameTM: Segmented memory acquisition mode with maximum trigger rate >5,000,000 waveforms per second
  • Plots: Time Trend, Histogram, Spectrum and Phase Noise
  • Math: Basic waveform arithmetic, FFT, and advanced equation editor
  • Search: Search on any trigger criteria 
  • Jitter: TIE and Phase Noise

Optional analysis1

  • Advanced Jitter and Eye Diagram Analysis
  • User-defined filtering
  • Advanced Spectrum View
  • RF vs. Time traces (magnitude, frequency, phase)
  • Digital Power Management
  • Mask/Limit Testing
  • Inverters, Motors, and Drives
  • LVDS Debug and Analysis
  • PAM3 Analysis
  • Advanced Power Measurements and Analysis
  • Advanced Vector Signal Analysis (SignalVu-PC)

Optional serial bus trigger, decode, and analysis1

  • I2C, SPI, eSPI, I3C, RS-232/422/485/UART, SPMI, SMBus, CAN, CAN FD, LIN, FlexRay, SENT, PSI5, CXPI, Automotive Ethernet,MIPI C-PHY,MIPI D-PHY, USB 2.0, eUSB2, Ethernet, EtherCAT, Audio, MIL-STD-1553, ARINC`429, Spacewire, 8B/10B,NRZ, Manchester, SVID, SDLC, 1-Wire, MDIO

Optional serial compliance test1

  • Ethernet, USB 2.0, Automotive Ethernet, Industrial Ethernet

 

Optional memory analysis1

  • DDR3 debug, analysis, and compliance test

 

Arbitrary/Function Generator1

  • 100 MHz waveform generation
  • Waveform Types: Arbitrary, Sine, Square, Pulse, Ramp, Triangle, DC Level, Gaussian, Lorentz, Exponential Rise/Fall, Sin(x)/x, Random Noise, Haversine, Cardiac

Digital voltmeter2

  • 4-digit AC RMS, DC, and DC+AC RMS voltage measurements

Trigger frequency counter2

  • 8-digit

Display

  • 15.6-inch (396 mm) TFT color
  • High Definition (1,920 x 1,080) resolution
  • Capacitive (multi-touch) touchscreen

 

Connectivity

  • USB Host (7 ports), USB 3.0 Device (1 port), LAN (10/100/1000 Base-T Ethernet; LXI Compliant), Display Port, DVI-D, VGA

e*Scope®

  • Remotely view and control the oscilloscope over a network connection through a standard web browser

Standard probes

  • One 10 MΩ passive voltage probe with less than 4 pF capacitive loading per channel

 

Warranty

  • 1 year standard

 

Dimensions

  • 12.2 in (309 mm) H x 17.9 in (454 mm) W x 8.0 in (204 mm) D
  • Weight: <25 lbs. (11.4 kg)

With a remarkably innovative pinch-swipe-zoom touchscreen user interface, the industry’s largest high-definition display, and 4, 6, or 8 FlexChannel® inputs that let you measure one analog or eight digital signals per channel, the 5 Series MSO is ready for today’s toughest challenges, and tomorrow’s too. It sets a new standard for performance, analysis, and overall user experience.

Never let a lack of channels slow down your verification and debug process again!

The 5 Series MSO offers better visibility into complex systems by offering four, six and eight channel models with a large 15.6-inch high-definition (1,920 x 1,080) display. Many applications, such as embedded systems, three-phase power electronics, automotive electronics, power supply design, and DC-to-DC power converters, require the observation of more than four analog signals to verify and characterize device performance, and to debug challenging system issues.

Most engineers can recall situations in which they were debugging a particularly difficult problem and wanted greater system visibility and context, but the scope they were using was limited to two or four analog channels. Using a second scope involves significant effort to align trigger points, difficulty in determining timing relationships across the two displays, and documentation challenges.

And while you might assume that a six and eight channel scope would cost 50% or 100% more than a four-channel scope, you’ll be pleasantly surprised to find that six channel models are only ~25% more than four channel models and eight channel models are only ~67% more than four channel models. The additional analog channels can pay for themselves quickly by enabling you to keep current and future projects on schedule.

5SeriesB MSO_48W738510
Voltage measurements on a three-phase motor showing the three-phase input voltages after start-up.

FlexChannel® technology enables maximum flexibility and broader system visibility

The 5 Series MSO redefines what a Mixed Signal Oscilloscope (MSO) should be. FlexChannel technology enables each channel input to be used as a single analog channel, eight digital logic inputs (with the TLP058 logic probe), or simultaneous analog and spectrum views with independent acquisition controls for each domain. Imagine the flexibility and configurability this provides.

With an eight FlexChannel model, you can configure the instrument to look at eight analog and zero digital signals. Or seven analog and eight digital. Or six analog and 16 digital, five analog and 24 digital and so on. You can change the configuration at any time by simply adding or removing TLP058 logic probes, so you always have the right number of digital channels.

5SeriesB MSO_48W738510
FlexChannel technology enables the ultimate in flexibility. Each input can be configured as a single analog or eight digital channels based on the type of probe you attach.

 

Previous-generation MSOs required tradeoffs, with digital channels having lower sample rates or shorter record lengths than analog channels. The 5 Series MSO offers a new level of integration of digital channels. Digital channels share the same high sample rate (up to 6.25 GS/s), and long record length (up to 500M points) as analog channels.

5SeriesB MSO_48W738510
The TLP058 provides eight high performance digital inputs. Connect as many TLP058 probes as you like, enabling up to a maximum of 64 digital channels.
5SeriesB MSO_48W738510
Channel 2 has a TLP058 Logic Probe connected to the eight inputs of a DAC. Notice the green and blue color coding, where ones are green and zeros are blue. Another TLP058 Logic Probe on Channel 3 is probing the SPI bus driving the DAC. The white edges indicate higher frequency information is available by either zooming in or moving to a faster sweep speed on the next acquisition.
5SeriesB MSO_48W738510
Beyond just analog and digital, FlexChannel inputs include Spectrum View. This Tektronix-patented technology enables you to simultaneously view both analog and spectral views of all your analog signals, with independent controls in each domain. For the first time ever, oscilloscope-based frequency-domain analysis is as easy as using a spectrum analyzer while retaining the ability to correlate frequency-domain activity with other time-domain phenomena.

Unprecedented signal viewing capability

The stunning 15.6″ (396 mm) display in the 5 Series MSO is the largest display in the industry., providing 100% more display area than a scope with a 10.4″ (264 mm) display. It is also the highest resolution display, with full HD resolution (1,920 x 1,080), enabling you to see many signals at once with ample room for critical readouts and analysis.

The viewing area is optimized to ensure that the maximum vertical space is available for waveforms. The Results Bar on the right can be hidden, enabling the waveform view to use the full width of the display.

 

5SeriesB MSO_48W738510
Stacked display mode enables easy visibility of all waveforms while maintaining maximum ADC resolution on each input for the most accurate measurements.

The 5 Series MSO offers a revolutionary new Stacked display mode. Historically, scopes have overlaid all waveforms in the same graticule, forcing difficult tradeoffs:

  • To make each waveform visible, you vertically scale and position each waveform so that they don’t overlap. Each waveform uses a small percentage of the available ADC range, leading to less accurate measurements.
  • For measurement accuracy, you vertically scale and position each waveform to cover the entire display. The waveforms overlap each other, making it hard to distinguish signal details on individual waveforms

The new Stacked display eliminates this tradeoff. It automatically adds and removes additional horizontal waveform ‘slices’ (additional graticules) as waveforms are created and removed. Each slice represents the full ADC range for the waveform. All waveforms are visually separated from each other while still using the full ADC range, enabling maximum visibility and accuracy. And it’s all done automatically as waveforms are added or removed! Channels can easily be reordered in stacked display mode by dragging and dropping the channel and waveform badges in the Settings bar at the bottom of the display. Groups of channels can also be overlaid within a slice to simplify visual comparison of signals.

The massive display in the 5 Series MSO also provides plenty of viewing area not only for signals, but also for plots, measurement results tables, bus decode tables and more. You can easily resize and relocate the various views to suit your application.

5SeriesB MSO_48W738510
Viewing four analog channels, a decoded serial bus waveform, decoded serial packet results table, seven measurements, a measurement histogram, measurements results table with statistics, and a DVM – simultaneously!

Exceptionally easy-to-use user interface lets you focus on the task at hand

The Settings Bar – key parameters and waveform management

Waveform and scope operating parameters are displayed in a series of “badges” in the Settings Bar that runs along the bottom of the display. The Settings Bar provides Immediate access for the most common waveform management tasks. With a single tap, you can:

  • Turn on channels
  • Add math waveforms
  • Add reference waveforms
  • Add bus waveforms
  • Enable the optional integrated Arbitrary/Function generator (AFG)
  • Enable the optional integrated digital voltmeter (DVM)

The Results Bar – analysis and measurements

The Results Bar on the right side of the display includes immediate, one-tap access to the most common analytical tools such as cursors, measurements, searches, measurement and bus decode results tables, plots, and notes.

DVM, measurement and search results badges are displayed in the Results Bar without sacrificing any waveform viewing area. For additional waveform viewing area, the Results Bar can be dismissed and brought back at any time.

5SeriesB MSO_48W738510
Configuration menus are accessed by simply double-tapping on the item of interest on the display. In this case, the Trigger badge was double-tapped to open the Trigger configuration menu.

Touch interaction finally done right

Scopes have included touch screens for years, but the touch interface has been an afterthought. The 5 Series MSO ‘s 15.6″ display includes a capacitive touchscreen and provides the industry’s first oscilloscope user interface truly designed for touch.

The touch interactions that you use with phones and tablets, and expect in a touch enabled device, are supported in the 5 Series MSO .

  • Drag waveforms left/right or up/down to adjust horizontal and vertical position or to pan a zoomed view
  • Pinch and expand to change scale or zoom in/out in either horizontal or vertical directions
  • Drag items to the trash can or drag them off the edge of the screen to delete them
  • Swipe in from the right to reveal the Results Bar or down from the top to access the menus in the upper left corner of the display

Smooth, responsive front panel controls allow you to make adjustments with familiar knobs and buttons, and you can add a mouse or keyboard as a third interaction method.

5SeriesB MSO_48W738510
Interact with the capacitive touch display in the same way you do on your phones and tablets.

 

Variable font size

Historically, oscilloscope user interfaces have been designed with fixed font sizes to optimize viewing of waveforms and readouts. This implementation is fine if all users have the same viewing preferences, but they don’t. Users spend a significant amount of time staring at screens, and Tektronix recognizes this. The 5 Series MSO offers a user preference for variable font sizes; scaling down to 12 points or up to 20 points. As you adjust the font size, the user interface dynamically scales so you can easily choose the best size for your application.

5SeriesB MSO_48W738510
Comparison showing how the user interface scales as font size changes.
5SeriesB MSO_48W738510
Efficient and intuitive front panel provides critical controls while still leaving room for the massive 15.6″ high definition display.

Attention to detail in the front-panel controls

Traditionally, the front face of a scope has been roughly 50% display and 50% controls. The 5 Series MSO display fills about 85% of the face of the instrument. To achieve this, it has a streamlined front panel that retains critical controls for simple intuitive operation, but with a reduced number of menu buttons for functions directly accessed via objects on the display.

Color-coded LED light rings indicate trigger source and vertical scale/position knob assignments. Large, dedicated Run/ Stop and Single Sequence buttons are placed prominently in the upper right, and other functions like Force Trigger, Trigger Slope, Trigger Mode, Default Setup, Auto-set and Quick-save functions are all available using dedicated front panel buttons.

Windows or not – you choose

The 5 Series MSO offers you the choice of whether to include a Microsoft Windows™ operating system.

The 5 Series MSO comes with a standard removable SSD that contains a closed embedded operating system that will boot as a dedicated scope with no ability to run or install other programs. An optional SSD with Windows 10 operating system is available that will boot to an open Windows 10 configuration, so you can minimize the oscilloscope application and access a Windows desktop where you can install and run additional applications on the oscilloscope or you can connect additional monitors and extend your desktop. Simply swap the drives as needed through an access panel on the bottom of the instrument.

Whether you run Windows or not, the oscilloscope operates in exactly the same way with the same look and feel and UI interaction.

Need higher channel density?

The 5 Series MSO is also available in a low-profile form factor – the MSO58LP. With eight 1 GHz input channels plus an auxiliary trigger input, in a 2U high package and 12-bit ADCs, the 5 Series MSO Low Profile sets a new standard for performance in applications where extreme channel density is required.

5SeriesB MSO_48W738510

Experience the performance difference

With up to 2 GHz analog bandwidth, 6.25 GS/s sample rates, standard 62.5 Mpts record length and a 12-bit analog to digital converter (ADC), the 5 Series MSO has the performance you need to capture waveforms with the best possible signal fidelity and resolution for seeing small waveform details.

Digital Phosphor technology with FastAcq™ high-speed waveform capture

To debug a design problem, first you must know it exists. Digital phosphor technology with FastAcq provides you with fast insight into the real operation of your device. Its fast waveform capture rate – greater than 500,000 waveforms per second – gives you a high probability of seeing the infrequent problems common in digital systems: runt pulses, glitches, timing issues, and more. To further enhance the visibility of rarely occurring events, intensity grading indicates how often rare transients are occurring relative to normal signal characteristics.

5SeriesB MSO_48W738510
FastAcq’s high waveform capture rate enables you to discover infrequent problems common in digital design.

Industry leading vertical resolution

The 5 Series MSO provides the performance to capture the signals of interest while minimizing the effects of unwanted noise when you need to capture high-amplitude signals while seeing smaller signal details. At the heart of the 5 Series MSO are 12-bit analog-to-digital converters (ADCs) that provide 16 times the vertical resolution of traditional 8-bit ADCs.

A new High Res mode applies a hardware-based unique Finite Impulse Response (FIR) filter based on the selected sample rate. The FIR filter maintains the maximum bandwidth possible for that sample rate while preventing aliasing and removing noise from the oscilloscope amplifiers and ADC above the usable bandwidth for the selected sample rate. High Res mode always provides at least 12 bits of vertical resolution and extends all the way to 16 bits of vertical resolution at ≤125 MS/s sample rates.

New lower-noise front end amplifiers further improve the 5 Series MSO ‘s ability to resolve fine signal detail.

5SeriesB MSO_48W738510
The 5 Series MSO ‘s 12-bit ADC, along with the new High Res mode, enable industry leading vertical resolution.

Triggering

Discovering a device fault is only the first step. Next, you must capture the event of interest to identify root cause. The 5 Series MSO provides a complete set of advanced triggers, including:

  • Runt
  • Logic
  • Pulse width
  • Window
  • Timeout
  • Rise/Fall time
  • Setup and Hold violation
  • Serial packet
  • Parallel data
  • Sequence
  • Video
  • Visual Trigger
  • RF Frequency vs. Time
  • RF Magnitude vs. Time

 

With up to a 500 Mpoint record length, you can capture many events of interest, even thousands of serial packets in a single acquisition, providing high-resolution to zoom in on fine signal details and record reliable measurements.

5SeriesB MSO_48W738510
The wide variety of trigger types and context-sensitive help in the trigger menu make it easier than ever to isolate the event of interest.

Visual Trigger – finding the signal of interest quickly

Finding the right cycle of a complex bus can require hours of collecting and sorting through thousands of acquisitions for an event of interest. Defining a trigger that isolates the desired event speeds up debug and analysis efforts.

Visual Trigger extends the instrument’s triggering capabilities by scanning through all waveform acquisitions and comparing them to on-screen areas (geometric shapes). You can create an unlimited number of areas using the mouse or touchscreen, and a variety of shapes (triangles, rectangles, hexagons, or trapezoids) can be used to specify the desired trigger behavior. Once shapes are created, they can be edited interactively to create custom shapes and ideal trigger conditions. Once multiple areas are defined, a Boolean logic equation can be used to set complex trigger conditions using on-screen editing features.

5SeriesB MSO_48W738510
Visual Trigger areas isolate an event of interest, saving time by only capturing the events you want to see.

By triggering only on the most important signal events, Visual Trigger can save hours of capturing and manually searching through acquisitions. In seconds or minutes, you can find the critical events and complete your debug and analysis efforts. Visual Trigger even works across multiple channels, extending its usefulness to complex system troubleshooting and debug tasks.

5SeriesB MSO_48W738510
Multiple channel triggering. Visual Trigger areas can be associated with events spanning multiple channels, such as triggering on a specific burst-width on channel 1 and a specified bit pattern on channel 2.

Accurate high-speed probing

The TPP Series passive voltage probes included with every 5 Series MSO offer all the benefits of general-purpose probes – high dynamic range, flexible connection options, and robust mechanical design – while providing the performance of active probes. Up to 1 GHz analog bandwidth enables you to see high frequency components in your signals, and extremely low 3.9 pF capacitive loading minimizes adverse effects on your circuits and is more forgiving of longer ground leads.

An optional, low-attenuation (2X) version of the TPP probe is available for measuring low voltages. Unlike other low-attenuation passive probes, the TPP0502 has high bandwidth (500 MHz) as well as low capacitive loading (12.7 pF).

5SeriesB MSO_48W738510
5 Series MSOs come standard with one TPP0500B (350 MHz, 500 MHz models) or TPP1000 (1 GHz, 2 GHz models) probe per channel.

The TekVPI® probe interface sets the standard for ease of use in probing. In addition to the secure, reliable connection that the interface provides, many TekVPI probes feature status indicators and controls, as well as a probe menu button right on the comp box itself. This button brings up a probe menu on the oscilloscope display with all relevant settings and controls for the probe. The TekVPI interface enables direct attachment of current probes without requiring a separate power supply. TekVPI probes can be controlled remotely through USB or LAN, enabling more versatile solutions in ATE environments. The 5 Series MSO provides up to 80 W of power to the front panel connectors, sufficient to power all connected TekVPI probes without the need for an additional probe power supply.

IsoVu™ Isolated Measurement System

Whether designing an inverter, optimizing a power supply, testing communication links, measuring across a current shunt resistor, debugging EMI or ESD issues, or trying to eliminate ground loops in your test setup, common mode interference has caused engineers to design, debug, evaluate, and optimize “blind” until now.

Tektronix’ revolutionary IsoVu technology uses optical communications and power-over-fiber for complete galvanic isolation. When combined with the 5 Series MSO equipped with the TekVPI interface, it is the first, and only, measurement system capable of accurately resolving high bandwidth, differential signals, in the presence of large common mode voltage with:

  • Complete galvanic isolation
  • Up to 1 GHz bandwidth
  • 1 Million to 1 (120 dB) common mode rejection at 100 MHz
  • 10,000 to 1 (80 dB) of common mode rejection at full bandwidth
  • Up to 2,500 V differential dynamic range
  • 60 kV common mode voltage range

 

5SeriesB MSO_48W738510
The Tektronix TIVP Series IsoVu™ Measurement System offers a galvanically isolated measurement solution to accurately resolve high bandwidth, differential signals up to 2,500 Vpk in the presence of large common mode voltages, with the best-in-class common mode rejection performance across its bandwidth.

High-side Gate Voltage Measurement with IsoVu

 

5SeriesB MSO_48W738510
Differential Probe (blue trace) vs. IsoVu Optically Isolated Probe (yellow trace)

 

The image above shows a comparison of the high-side gate voltage for a standard differential probe versus an optically isolated probe. For both at turn-off and turn-on, high-frequency ringing can be seen on the gate after the device’s gate passes through the threshold region. Due to coupling between the gate and power loop, some ringing is expected. However, in the case of the differential probe, the ringing has a significantly higher amplitude than is measured by the optically isolated probe. This is likely due to the changing reference voltage inducing common mode currents within the probe and an artifact of a standard differential probe. While the waveform measured by the differential probe appears to pass the maximum gate voltage of the device, the more accurate measurement of the optically isolated probe makes it clear that the device is within specification. Application designers using standard differential probes for gate voltage measurements should use caution as it may not be possible to differentiate between the probing and measurement system artifact shown here and an actual violation of the device ratings. This measurement artifact may cause the designer to increase the gate resistance to slow down the switching transient and reduce the ringing. However, this would unnecessarily increase losses in the SiC device. For this reason, it is essential to have a measurement system that accurately reflects the actual dynamics of the device, in order to appropriately design the system and optimize performance.

Comprehensive analysis for fast insight

Basic waveform analysis

Verifying that your prototype’s performance matches simulations and meets the project’s design goals requires careful analysis, ranging from simple checks of rise times and pulse widths to sophisticated power loss analysis, characterization of system clocks, and investigation of noise sources.

The 5 Series MSO offers a comprehensive set of standard analysis tools including:

  • Waveform- and screen-based cursors
  • 36 automated measurements. Measurement results include all instances in the record, the ability to navigate from one occurrence to the next, and immediate viewing of the minimum or maximum result found in the record
  • Basic waveform math
  • Basic FFT analysis
  • Advanced waveform math including arbitrary equation editing with filters and variables
  • Spectrum view frequency domain analysis with independent controls for time and frequency domains
  • FastFrame™ Segmented Memory enables you to make efficient use of the oscilloscope’s acquisition memory by capturing many trigger events in a single record while eliminating the large time gaps between events of interest. View and measure the segments individually or as an overlay.

Measurement results tables provide comprehensive statistical views of measurement results with statistics across both the current acquisition and all acquisitions.

 

 

5SeriesB MSO_48W738510
Using automated measurements to characterize power supply bring up.

Callouts

 

5SeriesB MSO_48W7385105SeriesB MSO_48W738510
Easy to use callouts (Note, Arrow, Rectangle, Bookmark) that are detailing the specifics of this test setup and corresponding results.

Documenting test results and methods is critical when sharing data across a team, recreating a measurement at a later date, or delivering a customer report. With a few taps on the screen, you can create as many custom callouts as needed; enabling you to document the specific details of your test results. With each callout, you can customize the text, location, color, font size, and font.

Navigation and search

Finding your event of interest in a long waveform record can be time consuming without the right search tools. With today’s record lengths of many millions of data points, locating your event can mean scrolling through literally thousands of screens of signal activity.

The 5 Series MSO offers the industry’s most comprehensive search and waveform navigation with its innovative Wave Inspector® controls. These controls speed panning and zooming through your record. With a unique force-feedback system, you can move from one end of your record to the other in just seconds. Or, use intuitive drag and pinch/expand gestures on the display itself to investigate areas of interest in a long record.

The Search feature allows you to automatically search through your long acquisition looking for user-defined events. All occurrences of the event are highlighted with search marks and are easily navigated to, using the Previous ( ← ) and Next ( → ) buttons found on the front panel or on the Search badge on the display. Search types include edge, pulse width, timeout, runt, window, logic, setup and hold, rise/fall time and parallel/serial bus packet content. You can define as many unique searches as you like.

You can also quickly jump to the minimum and maximum value of search results by using the Min and Max buttons on the Search badge.

 

 

5SeriesB MSO_48W738510
Earlier, FastAcq revealed the presence of a runt pulse in a digital data stream prompting further investigation. In this long 20 ms acquisition, Search 1 reveals that there are approximately 37,500 rising edges in the acquisition. Search 2 (run simultaneously) reveals that there are six runt pulses in the acquisition.

Mask and limit testing (optional)

 

 

5SeriesB MSO_48W738510
Custom, multiple segment mask capturing the presence of a signal glitch and runt pulse in a waveform.

Whether you are focused on signal integrity or setting up pass/fail conditions for production, mask testing is an efficient tool to characterize the behavior of certain signals in a system. Quickly create custom masks by drawing mask segments on the screen. Tailor a test to your specific requirements and set actions to take when a mask hit is registered, or when a complete test passes or fails.

Limit testing is an insightful way to monitor the long-term behavior of signals, helping you characterize a new design or confirm hardware performance during production line testing. Limit tests compare your live signal to an ideal, or golden version of the same signal with user-defined vertical and horizontal tolerances.

You can easily tailor a mask or limit test to your specific requirements by:

  • Defining test duration in number of waveforms
  • Setting a violation threshold that must be met before considering a test a failure
  • Counting violations/failures and reporting statistical information
  • Setting actions upon violations, test failure, and test complete

 

User-defined filtering (optional)

In the broad sense, any system that processes a signal can be thought of as a filter. For example, an oscilloscope channel operates as a low pass filter where its 3 dB down point is referred to as its bandwidth. Given a waveform of any shape, a filter can be designed that can transform it into a defined shape within the context of some basic rules, assumptions, and limitations.

Digital filters have some significant advantages over analog filters. For example, the tolerance values of analog filter circuit components are high enough that high order filters are difficult or even impossible to implement. High order filters are easily implemented as digital filters. Digital filters can be implemented as Infinite Impulse Response (IIR) or Finite Impulse Response (FIR). The choice of IIR or FIR filters are based upon design requirements and application.

The 5 Series MSO has the ability to apply designated filters to math waveforms through a MATH arbitrary function. Option 5-UDFLT takes this functionality a level deeper, providing more than MATH arbitrary basic functions and adds flexibility to support standard filters and can be used for application centric filter designs.

 

5SeriesB MSO_48W738510
Filters can be created through the Math dialog. Once a filter is edited, it can be easily applied, saved, and recalled for use or modification later.

 

Filter types supported on the 5 Series MSO include:

  • Low pass
  • High pass
  • Band pass
  • Band stop
  • All pass
  • Hilbert
  • Differentiator
  • Custom

 

Filter response types supported on the 5 Series MSO include:

  • Butterworth
  • Chebyshev I
  • Chebyshev II
  • Elliptical
  • Gaussian
  • Bessel-Thomson

The Filter Response control is available for all Filter Types except All-pass, Hilbert, or Differentiator.

 

 

5SeriesB MSO_48W738510
Filter creation dialog showing selection for Filter Type, Filter Response, Cutoff Frequency, Filter Order, and a graphical representation of Magnitude/Phase, Impulse Response, and Step Response

 

Filter designs can be saved, recalled, and applied once any editing has been completed.

Serial protocol triggering and analysis (optional)

During debugging, it can be invaluable to trace the flow of activity through a system by observing the traffic on one or more serial buses. It could take many minutes to manually decode a single serial packet, much less the thousands of packets that may be present in a long acquisition.

And if you know the event of interest that you are attempting to capture occurs when a particular command is sent across a serial bus, wouldn’t it be nice if you could trigger on that event? Unfortunately, it’s not as easy as simply specifying an edge or a pulse width trigger.

 

5SeriesB MSO_48W738510
Triggering on a USB full-speed serial bus. A bus waveform provides time-correlated decoded packet content including Start, Sync, PID, Address, End Point, CRC, Data values, and Stop, while the bus decode table presents all packet content from the entire acquisition.

The 5 Series MSO offers a robust set of tools for working with the most common serial buses found in embedded design including I2C, SPI, eSPI, I3C, RS-232/422/485/UART, SPMI, SMBus, CAN, CAN FD, LIN, FlexRay, SENT, PSI5, CXPI, Automotive Ethernet,MIPI C-PHY,MIPI D-PHY, USB LS/FS/HS, eUSB2.0, Ethernet 10/100, EtherCAT, Audio (I2S/LJ/RJ/TDM), MIL-STD-1553, ARINC 429, Spacewire, 8B/10B, NRZ, Manchester, SVID, SDLC, 1-Wire, and MDIO.

Serial protocol search enables you to search through a long acquisition of serial packets and find the ones that contain the specific packet content you specify. Each occurrence is highlighted by a search mark. Rapid navigation between marks is as simple as pressing the Previous ( ← ) and Next ( → ) buttons on the front panel or in the Search badge that appears in the Results Bar.

The tools described for serial buses also work on parallel buses. Support for parallel buses is standard in the 5 Series MSO. Parallel buses can be up to 64 bits wide and can include a combination of analog and digital channels.

 

  • Serial protocol triggering lets you trigger on specific packet content including start of packet, specific addresses, specific data content, unique identifiers, and errors.
  • Bus waveforms provide a higher-level, combined view of the individual signals (clock, data, chip enable, and so on) that make up your bus, making it easy to identify where packets begin and end, and identifying sub-packet components such as address, data, identifier, CRC, and so on.
  • The bus waveform is time aligned with all other displayed signals, making it easy to measure timing relationships across various parts of the system under test.
  • Bus decode tables provide a tabular view of all decoded packets in an acquisition much like you would see in a software listing. Packets are time stamped and listed consecutively with columns for each component (Address, Data, and so on).

 

 

 

 

 

 

 

Compliance applications (optional)

A key focus area for embedded designers is testing various embedded and interface technologies for compliance. This ensures the device passes the logo certification at plugfests and achieves successful interoperability when working with other compliant devices.

The compliance test specifications for high speed serial standards like USB, Ethernet, Memory, Display and MIPI are developed by the respective consortiums or governing bodies. Working closely with these consortiums, Tektronix has developed oscilloscope-based compliance applications that not only focus on providing pass/fail results but also provide deeper insight into any failures by providing relevant measurement tools such as jitter and timing analysis to debug failing designs.

These automated compliance applications are built on a framework that provides:

  • Complete test coverage per the specification.
  • Fast test times with optimized acquisitions and test sequencing based on customized settings.
  • Analysis based on previously-acquired signals, allowing the device under test (DUT) to be disconnected from the setup once all acquisitions are completed. This also allows analysis of waveforms acquired on a different oscilloscope or captured at a remote lab, facilitating a very collaborative test environment.
  • Optional signal validation during acquisition to ensure the right signals are being captured.
  • Additional parametric measurements for design debug.
  • Custom eye diagram mask testing for insight into design margin.
  • Detailed reports in multiple formats with setup information, results, margins, waveform screen shots and plot images.
5SeriesB MSO_48W738510
The TekExpress USB 2.0 automated compliance testing configuration menu.

Spectrum View

 

 

5SeriesB MSO_48W738510
Intuitive spectrum analyzer controls like center frequency, span and resolution bandwidth (RBW), independent from time domain controls, provide easy setup for frequency domain analysis. A spectrum view is available for each FlexChannel analog input, enabling multi-channel mixed domain analysis.

It is often easier to debug an issue by viewing one or more signals in the frequency domain. Oscilloscopes have included math-based FFTs for decades in an attempt to address this need. However, FFTs are notoriously difficult to use for two primary reasons.

First, when performing frequency-domain analysis, you think about controls like Center Frequency, Span, and Resolution Bandwidth (RBW), as you would typically find on a spectrum analyzer. But then you use an FFT, where you are stuck with traditional scope controls like sample rate, record length and time/div and have to perform all the mental translations to try to get the view you’re looking for in the frequency-domain.

Second, FFTs are driven by the same acquisition system that’s delivering the analog time-domain view. When you optimize acquisition settings for the analog view, your frequency-domain view isn’t what you want. When you get the frequency-domain view you want, your analog view is not what you want. With math-based FFTs, it is virtually impossible to get optimized views in both domains.

Spectrum View changes all of this. Tektronix’ patented technology provides both a decimator for the time-domain and a digital downconverter for the frequency-domain behind each FlexChannel. The two different acquisition paths let you simultaneously observe both time- and frequency-domain views of the input signal with independent acquisition settings for each domain. Other manufacturers offer various ‘spectral analysis’ packages that claim ease-of-use, but they all exhibit the limitations described above. Only Spectrum View provides both exceptional ease-of-use and the ability to achieve optimal views in both domains simultaneously.

5SeriesB MSO_48W738510
Spectrum Time gates the range of time where the FFT is being calculated. Represented by a small graphical rectangle in the time domain view, it can be positioned to provide time correlation with the time domain waveform. Perfect for conducting Mixed Domain Analysis. Up to 11 automated peak markers provide frequency and magnitude values of each peak. The Reference marker is always the highest peak shown and is indicated in red.

Visualizing changes in the RF signal (optional)

RF time domain traces make it easy to understand what’s happening with a time-varying RF signal. There are three RF time domain traces that are derived from the underlying I and Q data of Spectrum View:

  • Magnitude – The instantaneous amplitude of the spectrum vs. time.
  • Frequency – The instantaneous frequency of the spectrum relative to the center frequency vs. time.
  • Phase – The instantaneous phase of the spectrum relative to the center frequency vs. time.

Each of these traces can be turned on and off independently, and all three can be displayed simultaneously.

5SeriesB MSO_48W738510
The lower trace is the frequency vs. time trace derived from the input signal. Notice that the Spectrum Time is positioned during a transition from the lowest frequency to the middle frequency, so the energy is spread across a number of frequencies. With the frequency vs. time trace, you can easily see the different frequency hops, simplifying characterization of how the device switches between frequencies.

Triggering on changes in the RF signal (optional)

Whether you need to find the source of electromagnetic interference or understand the behavior of a VCO, hardware triggers for RF versus time make it easy to isolate, capture, and understand the RF signal behavior. Trigger on edges, pulse widths, and timeout behavior of RF magnitude vs. time and RF frequency vs. time.

Comprehensive vector signal analysis with SignalVu-PC (optional)

When analysis needs go beyond the basic spectrum, amplitude, frequency, and phase vs. time you can employ the SignalVu-PC vector signal analysis application. This enables in-depth transient RF signal analysis, detailed RF pulse characterization, and comprehensive analog and digital RF modulation analysis.

To enable the SignalVu-PC application on your 5 Series MSO Oscilloscope, three options are required.

  1. To run the application from a separate Windows PC, the Windows SSD (5B-WIN) needs to be installed in the oscilloscope.
  2. The Spectrum View RF versus time traces option (5-SV-RFVT) needs to be installed in the oscilloscope to enable I/Q data transfer.
  3. The Connect (CONxx-SVPC) license needs to be installed on the SignalVu-PC to enable base features of application, which includes 16+ RF measurements and displays.

 

The RF digital down converters and integrated measurement engines behind each channel have your complex mixed-signal and mixed-domain analysis needs covered in one instrument.

 

5SeriesB MSO_48W738510
Pulse analysis on SignalVu-PC running on a 5 Series B MSO

 

Jitter analysis

The 5 Series MSO has seamlessly integrated the DPOJET Essentials jitter and eye pattern analysis software package, extending the oscilloscope’s capabilities to take measurements over contiguous clock and data cycles in a single-shot real-time acquisition. This enables measurement of key jitter and timing analysis parameters such as Time Interval Error and Phase Noise to help characterize possible system timing issues.

Analysis tools, such as plots for time trends and histograms, quickly show how timing parameters change over time, and spectrum analysis quickly shows the precise frequency and amplitude of jitter and modulation sources.

Option 5-DJA adds additional jitter analysis capability to better characterize your device’s performance. The 31 additional measurements provide comprehensive jitter and eye-diagram analysis and jitter decomposition algorithms, enabling the discovery of signal integrity issues and their related sources in today’s high-speed serial, digital, and communication system designs. Option 5-DJA also provides eye diagram mask testing for automated pass/fail testing.

 

5SeriesB MSO_48W738510
The unique Jitter Summary provides a comprehensive view of your device’s performance in a matter of seconds.

Power analysis (optional)

The 5 Series MSO has also integrated the optional 5-PWR/SUP5-PWR power analysis package into the oscilloscope’s automatic measurement system to enable quick and repeatable analysis of power quality, input capacitance, in-rush current, harmonics, switching loss, safe operating area (SOA), modulation, ripple, magnetics measurements, efficiency, amplitude and timing measurements, slew rate (dv/dt and di/dt), Control Loop Response (Bode Plot), and Power Supply Rejection Ratio (PSRR).

Measurement automation optimizes the measurement quality and repeatability at the touch of a button, without the need for an external PC or complex software setup.

 

 

5SeriesB MSO_48W738510
The Power Analysis measurements display a variety of waveforms and plots.

 

Inverter Motor Drive Analysis (optional)

5SeriesB MSO_48W738510
On the left is a Phasor Diagram displaying the phase and magnitude of current and voltage measurements for all three phases of power. In the results badge on the right, are the results from the automated measurements of power quality, power harmonics and the phasor diagram.

During the design and validation of systems that utilize 3 Phase power, it can be difficult to correlate control systems and power electronics with the performance of the overall system. The IMDA can be used on six and eight channel versions of the 5 Series MSO (MSO56B and MSO58B) to analyze digital control and power electronics sub-systems.

This will give you deeper insights enabling you to debug the design, efficiency and reliability of:

  • 3 Phase Power inverters, converters, power supplies and Automotive 3 Phase designs for DC-AC topology
  • Motors (brushless AC, brushless DC, induction, permanent magnet, universal, stepper, rotor)
  • Drives (AC, DC, variable frequency, servo)

 

The automated measurements that are included with 5-IMDA are:

  • Input analysis
    • Power Quality with Phasor Diagram
    • Harmonics
    • Input Voltage
    • Input Current
    • Input Power
  • Ripple analysis
    • Line Ripple
    • Switching Ripple
  • Output analysis
    • Phasor Diagram
    • Efficiency
  • Wiring configurations
    • 1 Volt/1 Current – 1P2W
    • 2 Volt/2 Current – 1P3W
    • 2 Volt/2 Current – 3P3W
    • 3 Volt/3 Current – 3P3W
    • 3 Volt/3 Current – 3P4W

 

With option 5-IMDA-DQ0 gain the ability to transform the three-phase AC time domain waveforms into DC signals that are graphically represented as rotating coordinates on a phasor plot.

Designed with your needs in mind

Connectivity

The 5 Series MSO contains a number of ports which you can use to connect the instrument to a network, directly to a PC, or to other test equipment.

 

  • Two USB 2.0 and one USB 3.0 host ports on the front and four more USB host ports (two 2.0, two 3.0) on the rear panel enable easy transfer of screen shots, instrument settings, and waveform data to a USB mass storage device. A USB mouse and keyboard can also be attached to USB host ports for instrument control and data entry.
  • The rear panel USB Device port is useful for controlling the oscilloscope remotely from a PC.
  • The standard 10/100/1000BASE-T Ethernet port on the rear of the instrument enables easy connection to networks and provides LXI Core 2011 compatibility.
  • DVI-D, Display Port and VGA ports on the rear of the instrument lets you duplicate the instrument display on an external monitor or projector.

 

5SeriesB MSO_48W738510
The I/O you need to connect the 5 Series MSO to the rest of your design environment.

Upgrade Automated Test Equipment (ATE) systems quickly and smoothly

Anyone working closely with automated test systems knows that moving to a new model or platform can be painful. Modifying an existing codebase for a new product can be prohibitively expensive and complicated. Now there’s a solution.

All 5 Series MSO’s include a Programmatic Interface (PI) Translator. When enabled, the PI Translator acts as an intermediate layer between your test application and the oscilloscope. It recognizes a subset of legacy commands from the popular DPO/MSO5000B and DPO7000C platforms and translates them on the fly into supported commands for the 5 Series MSO. The Translator interface is designed to be human-readable and easily extensible, which means that you can customize its behavior to minimize the amount of effort required when transitioning to your new oscilloscope.

Remote operation to improve collaboration

Want to collaborate with a design team on the other side of the world?

The embedded e*Scope® capability enables fast control of the oscilloscope over a network connection through a standard web browser. Simply enter the IP address or network name of the oscilloscope and a web page will be served to the browser. Control the oscilloscope remotely in the exact same way that you do in-person. Alternatively, you can use Microsoft Windows Remote Desktop™ capability to connect directly to your oscilloscope and control it remotely.

The industry-standard TekVISA™ protocol interface is included for using and enhancing Windows applications for data analysis and documentation. IVI-COM instrument drivers are included to enable easy communication with the oscilloscope using LAN or USBTMC connections from an external PC.

5SeriesB MSO_48W738510
e*Scope provides simple remote viewing and control using common web browsers.

PC-based analysis and remote connection to your oscilloscope

Get the analysis capability of an award-winning oscilloscope on your PC. Analyze waveforms anywhere, anytime. The basic license lets you view and analyze waveforms, perform many types of measurements and decode the most common serial buses – all while remotely accessing your oscilloscope. Advanced license options add capabilities such as multi-scope analysis, more serial bus decoding options, jitter analysis and power measurements.

5SeriesB MSO_48W738510
TekScope PC analysis software runs on a Windows computer with the same award-winning user experience as the 4, 5, and 6 Series MSO’s

Key features of the TekScope PC analysis software include:

  • Recall Tektronix oscilloscope sessions and waveform files from the equipment made by Tektronix and other vendors.
  • Waveform file formats supported include .wfm, .isf, .csv, .h5, .tr0, .trc, and .bin
  • Remotely connect to the Tektronix 4/5/6 Series MSO’s to acquire data in real-time
  • Share the data remotely with your colleagues so that they can perform analysis and make measurements as if they were sitting in front of the oscilloscope
  • Synchronize waveforms from the multiple oscilloscopes in real-time
  • Perform advanced analysis even if your oscilloscope isn’t equipped with TekScope PC analysis software

 

TekDrive collaborative test and measurement workspace

Using TekDrive, you can upload, store, organize, search, download, and share any file type from any connected device. TekDrive is natively integrated into the 5 Series MSO for seamless sharing and recalling of files – no USB stick is required. Analyze and explore standard files like .wfm, .isf, .tss, and .csv, directly in a browser with smooth interactive waveform viewers. TekDrive is purpose built for integration, automation, and security.

 

5SeriesB MSO_48W738510
TekDrive collaborative workspace – save files directly from your 5 Series MSO and share across your team

 

Arbitrary/Function Generator (AFG)

The instrument contains an optional integrated arbitrary/function generator, perfect for simulating sensor signals within a design or adding noise to signals to perform margin testing. The integrated function generator provides output of predefined waveforms up to 100 MHz for sine, square, pulse, ramp/triangle, DC, noise, sin(x)/x (Sinc), Gaussian, Lorentz, exponential rise/fall, Haversine and cardiac. The AFG can load waveform records up to 128 k points in size from an internal file location or a USB mass storage device.

The AFG feature is compatible with Tektronix’ ArbExpress PC-based waveform creation and editing software, making creation of complex waveforms fast and easy.

Digital Voltmeter (DVM) and Trigger Frequency Counter

The instrument contains an integrated 4-digit digital voltmeter (DVM) and 8-digit trigger frequency counter. Any of the analog inputs can be a source for the voltmeter, using the same probes that are already attached for general oscilloscope usage. The trigger frequency counter provides a very precise readout of the frequency of the trigger event on which you’re triggering.

Both the DVM and trigger frequency counter are available for free and are activated when you register your product.

Enhanced security option

The optional 5-SEC enhanced security option enables password-protected enabling/disabling of all instrument I/O ports and firmware upgrades. In addition, option 5-SEC provides the highest level of security by ensuring that internal memory never stores user settings or waveform data, in compliance with National Industrial Security Program Operating Manual (NISPOM) DoD 5220.22-M, Chapter 8 requirements and Defense Security Service Manual for the Certification and Accreditation of Classified Systems under the NISPOM. This ensures that you can confidently move the instrument out of a secure area.

Help when you need it

The 5 Series MSO includes several helpful resources so you can get your questions answered rapidly without having to find a manual or go to a website:

  • Graphical images and explanatory text are used in numerous menus to provide quick feature overviews.
  • All menus include a question mark icon in the upper right that takes you directly to the portion of the integrated help system that applies to that menu.
  • A short user interface tutorial is included in the Help menu for new users to come up to speed on the instrument in a matter of a few minutes.

 

5SeriesB MSO_48W738510
Integrated help answers your questions rapidly without having to find a manual or go to the internet.

Tektronix MSO56B 6 channel Oscilloscope

Tektronix MSO56B Datasheet

Tektronix MSO56B 6 channel Oscilloscope

Ordering information

Use the following steps to select the appropriate instrument and options for your measurement needs.

Step 1

Start by selecting a 5 Series MSO model based on the number of FlexChannel inputs you need. Each FlexChannel input supports 1 analog or 8 digital input signals, interchangeably.
Model Number of FlexChannels
MSO54B 4
MSO56B 6
MSO58B 8
Each model includes
One passive analog probe per FlexChannel:

  • 350 MHz or 500 MHz bandwidth models: TPP0500B 500 MHz probes
  • 1 GHz or 2 GHz bandwidth models: TPP1000 1 GHz probes
Installation and safety manual (translated in English, Japanese, Simplified Chinese )
Embedded Help
Front cover with integrated accessory pouch
Mouse
Power cord
Calibration certificate documenting traceability to National Metrology Institute(s) and ISO9001/ISO17025 quality system registration
One-year warranty covering all parts and labor on the instrument.

One-year warranty covering all parts and labor on included probes

Step 2

Add instrument functionality by adding an option bundle
Three classes of option bundles are offered (Starter, Pro, Ultimate), providing a range of options depending on your budget and application needs. For detailed information on the current contents of each bundle, please visit our website and view the software bundle brochure at https://www.tek.com/document/brochure/software-bundles-for-the-4-5-and-6-series-mso-oscilloscopes.

  1. Starter bundle offers the most common serial bus decoding, protocol analysis, and hardware enhancing options bundled together.
  2. Pro bundles are application-specific (Serial trigger and decode, Power Integrity, Signal Integrity, Automotive, Automated Compliance Test, Military Government Aerospace) and include all options from the Starter bundle.
  3. Ultimate bundle includes all options from the Starter bundle in addition to the all options from all Pro bundles.

 

Each purchased bundle has two duration options:

  1. A 1-year subscription includes all features and free upgrades for the purchased bundle for one year; after which time the features are disabled. Additional 1-year subscription can be purchased for the selected bundle.
  2. A perpetual subscription enables all features for the purchased bundle permanently. A perpetual subscription includes 1-year of free upgrades to the bundle feature set. After the year, the feature set is frozen to those enabled by the last update made.

 

1 Year license Perpetual license Bundle description
5-STARTER-1Y 5-STARTER-PER Includes I2C, SPI, RS-232/422/UART serial trigger and analysis, AFG (Arbitrary/Function Generator)
5-PRO-SERIAL-1Y 5-PRO-SERIAL-PER Includes 5-STARTER plus 125 MS/ch record length, additional select serial analysis options
5-PRO-POWER-1Y 5-PRO-POWER-PER Includes 5-STARTER plus 125 MS/ch record length, select power analysis options
5-PRO-SIGNAL-1Y 5-PRO-SIGNAL-PER Includes 5-STARTER plus 125 MS/ch record length, advanced Jitter and select analysis options
5-PRO-COMPL-1Y 5-PRO-COMPL-PER Includes 5-STARTER plus 125 MS/ch record length, advanced select automated compliance test options
5-PRO-AUTO-1Y 5-PRO-AUTO-PER Includes 5-STARTER plus 125 MS/ch record length, advanced Jitter and select automotive analysis options
5-PRO-MILGOV-1Y 5-PRO-MILGOV-PER Includes 5-STARTER plus 125 MS/ch record length, advanced Jitter, mask test, and select serial analysis options
5-ULTIMATE-1Y 5-ULTIMATE-PER Includes 5-STARTER, all 5-PRO bundle options plus 500 MS/ch record length, RF vs. time waveforms and trigger, extended Spectrum View capture bandwidth, and video trigger options

Step 3

Configure your oscilloscope by selecting the analog channel bandwidth you need
Choose the bandwidth you need today by choosing one of these bandwidth options. You can upgrade it later by purchasing an upgrade option.

Bandwidth Option Bandwidth
5-BW-350 350 MHz
5-BW-500 500 MHz
5-BW-1000 1 GHz
5-BW-2000 2 GHz

Step 4

Add instrument functionality
Instrument functionality can be ordered with the instrument or later as an upgrade kit.

Instrument Option Built-in Functionality
5-RL-125M Extend record length from 62.5 Mpoints/channel to 125 Mpoints/channel
5-RL-250M Extend record length from 62.5 Mpoints/channel to 250 Mpoints/channel
5-RL-500M Extend record length from 62.5 Mpoints/channel to 500 Mpoints/channel
5B-WIN Add removable SSD with Microsoft Windows 10 operating system license
5-AFG Add Arbitrary / Function Generator
5-SEC 8 Add enhanced security for instrument declassification and password-protected enabling and disabling of all USB ports and firmware upgrade.

Step 5

Add optional serial bus triggering, decode, and search capabilities
Choose the serial support you need today by choosing from these serial analysis options. You can upgrade later by purchasing an upgrade kit.

Instrument Option Serial Buses Supported
5-SRAERO Aerospace (MIL-STD-1553, ARINC 429)
5-SRAUDIO Audio (I2S, LJ, RJ, TDM)
5-SRAUTO Automotive (CAN, CAN FD, LIN, FlexRay, and CAN symbolic decoding)
5-SRAUTOEN1 100BASE-T1 Automotive Ethernet serial analysis
5-SRAUTOSEN Automotive sensor (SENT)
5-SRCOMP Computer (RS-232/422/485/UART)
5-SRCPHY MIPI C-PHY Vx.x (DSI-2, CSI-2 decode and search only)
5-SRCXPI CXPI (decode and search only)
5-SRDPHY MIPI D-PHY (DSI-1, CSI-2 decode and search only)
5-SREMBD Embedded (I2C, SPI)
5-SRENET Ethernet (10BASE-T, 100BASE-TX)
5-SRESPI eSPI (decode and search only)
5-SRETHERCAT EtherCAT (decode and search only)
5-SR8B10B 8B/10B(decode and search only)
5-SRI3C MIPI I3C
5-SRMANCH Manchester (decode and search only)
5-SRMDIO MDIO (decode and search only)
5-SRNRZ NRZ (decode and search only)
5-SRONEWIRE One wire (1-Wire decode and search only)
5-SRPM Power Management (SPMI)
5-SRPSI5 PSI5 (decode and search only)
5-SRSDLC​ Synchronous Data Link Control Protocol Decode & Search
5-SRSMBUS SMBus (decode and search only)
5-SRSPACEWIRE Spacewire (decode and search only)
5-SRVID SVID (decode and search only)
5-SRUSB2 USB (USB2.0 LS, FS, HS) 9
5-SREUSB2 eUSB2.0 (decode and search only)
Differential serial bus? Be sure to check Add analog probes and adapters for differential probes.
Add third party serial bus decode and analysis capabilities
Third-party applications are available that provide serial bus decode and analysis capabilities to use on the 5 Series MSO. Tektronix part numbers listed below can be ordered directly from Tektronix or through an authorized distributor. Ordered application software will be shipped directly by the third-party. Use of the third-party software applications require a Windows 10 SSD (option 5B-WIN).

 

Tektronix Part Number Serial Buses Supported
PGY-EMMC Embedded Multi-media Controller (eMMC) memory
PGY-QSPI Quad Serial Peripheral Interface (QSPI) – 2 enhanced IO lines for SPI
PGY-SDIO Secure Digital Input Output (SDIO)

Step 6

Add optional serial bus compliance testing
Choose the serial compliance testing packages you need today by choosing from these options. You can upgrade later by purchasing an upgrade kit. All options in the table below require option 5B-WIN (SSD with Microsoft Windows 10 operating system).

Instrument Option Serial Buses Supported
5-CMAUTOEN Automotive Ethernet (100Base-T1, 1000Base-T1) automated compliance test solution.

≥2 GHz bandwidth required for 1000BASE-T1

5-CMAUTOEN10 Automotive Ethernet (10BASE-T1S Short Reach) automated compliance test solution.
5-AUTOEN-BND Automotive Ethernet Compliance, Signal Separation, PAM3 Analysis, 100Base-T1 Decode software (requires options 5-DJA)
5-AUTOEN-SS Automotive Ethernet Signal Separation
5-CMAUTOEN10 Automotive Ethernet (10Base-T1S Short Reach) automated compliance test solution
5-CMINDUEN10 Industrial Ethernet (10Base-T1L Long Reach) automated compliance test solution
5-CMENET Ethernet automated compliance test solution (10BASE-T/100BASE-T/1000BASE-T).

≥1 GHz bandwidth required for 1000BASE-T

5-CMUSB2 USB2.0 automated compliance test solution.

Requires TDSUSBF USB test fixture

≥2 GHz bandwidth required for high-speed USB

Step 7

Add optional analysis capabilities
Instrument Option Advanced Analysis
5-DBLVDS TekExpress automated LVDS test solution (requires options 5-DJA and 5B-WIN)
5-DJA Advanced Jitter and Eye Analysis
5-DPM Digital Power Management
5-DPMBAS Basic Digital Power Management
5-IMDA10 Inverter Motor Drive Analysis
5-IMDA-DQ01 DQ0 feature for Inverter Motor Drive Analysis (requires option 5-IMDA)
5-IMDA-MECH1 Mechanical measurements for Inverter Motor Drive Analysis (requires option 5-IMDA)
5-MTM Mask and Limit testing
5-PAM3 PAM3 analysis (requires options 5-DJA and 5B-WIN)
5-PS21112 Power Solution Bundle (5-PWR, THDP0200, TCP0030A, 067-1686-xx deskew fixture)
5-PS2FRA23 Power Solution Bundle (5-PWR, THDP0200, TCP0030A, two TPP0502, 067-1686-xx deskew fixture)
5-PWR 13 Power Measurement and Analysis
5-SV-BW-1 Increase Spectrum View Capture Bandwidth to 500 MHz
5-SV-RFVT Spectrum View RF versus Time analysis, trigger and remote IQ data transferring
5-UDFLT User Defined Filter Creation Tool
5-VID NTSC, PAL, and SECAM video triggering
Add vector signal analysis
SignalVu-PC is a stand-alone application that can be run on a 5 Series MSO or on a separate Windows PC to provide advanced vector signal analysis. In order to run SignalVu-PC on your 5 Series MSO or separate Windows PC, three options are required.
  1. To run the application from a separate Windows PC, the Windows SSD (5B-WIN) needs to be installed in the oscilloscope.
  2. The Spectrum View RF versus time traces option (5-SV-RFVT) needs to be installed in the oscilloscope to enable I/Q data transfer.
  3. The Connect (CONxx-SVPC) license needs to be installed on the SignalVu-PC to enable base features of the application, which includes 16+ RF measurements and displays.

Step 8

Add digital probes
Each FlexChannel input can be configured as eight digital channels simply by connecting a TLP058 logic probe to a FlexChannel input. You can order TLP058 probes with the instrument or separately.

For this instrument Order To add
MSO54B 1 to 4 TLP058 Probes 8 to 32 digital channels
MSO56B 1 to 6 TLP058 Probes 8 to 48 digital channels
MSO58B 1 to 8 TLP058 Probes 8 to 64 digital channels

Step 9

Add analog probes and adapters
Add additional recommended probes and adapters

Recommended Probe / Adapter Description
TAP1500 1.5 GHz TekVPI® active single-ended voltage probe, ±8 V input voltage
TAP2500 2.5 GHz TekVPI® active single-ended voltage probe, ±4 V input voltage
TAP3500 3.5 GHz TekVPI® active single-ended voltage probe, ±4 V input voltage
TAP4000 4 GHz TekVPI® active single-ended voltage probe, ±4 V input voltage
TCP0030A 30 A AC/DC TekVPI® current probe, 120 MHz BW
TCP0020 20 A AC/DC TekVPI® current probe, 50 MHz BW
TCP0030A 30 A AC/DC TekVPI current probe, 120 MHz BW
TCP0150 150 A AC/DC TekVPI® current probe, 20 MHz BW
TRCP0300 30 MHz AC current probe, 250 mA to 300 A
TRCP0600 30 MHz AC current probe, 500 mA to 600 A
TRCP3000 16 MHz AC current probe, 500 mA to 3000 A
TDP0500 500 MHz TekVPI® differential voltage probe, ±42 V differential input voltage
TDP1000 1 GHz TekVPI® differential voltage probe, ±42 V differential input voltage
TDP1500 1.5 GHz TekVPI® differential voltage probe, ±8.5 V differential input voltage
TDP3500 3.5 GHz TekVPI® differential voltage probe, ±2 V differential input voltage
TDP4000 4 GHz TekVPI® differential voltage probe, ±2 V differential input voltage
THDP0100 ±6 kV, 100 MHz TekVPI® high-voltage differential probe
THDP0200 ±1.5 kV, 200 MHz TekVPI® high-voltage differential probe
TMDP0200 ±750 V, 200 MHz TekVPI® high-voltage differential probe
TPR1000 1 GHz, Single-Ended TekVPI® Power-Rail Probe; includes one TPR4KIT accessory kit
TPR4000 4 GHz, Single-Ended TekVPI® Power-Rail Probe; includes one TPR4KIT accessory kit
TIVP02 Isolated Probe; 200 MHz, ±5 V to ±2500 V depending on tip; 2 meter cable
TIVP02L Isolated Probe; 200 MHz, ±5 V to ±2500 V depending on tip; 10 meter cable
TIVP05 Isolated Probe; 500 MHz, ±5 V to ±2500 V depending on tip; 2 meter cable
TIVP05L Isolated Probe; 500 MHz, ±5 V to ±2500 V depending on tip; 10 meter cable
TIVP1 Isolated Probe; 1 GHz, ±5 V to ±2500 V depending on tip; 2 meter cable
TIVP1L Isolated Probe; 1 GHz, ±5 V to ±2500 V depending on tip; 10 meter cable
TPP0502 500 MHz, 2X TekVPI® passive voltage probe, 12.7 pF input capacitance
TPP0850 2.5 kV, 800 MHz, 50X TekVPI® passive high-voltage probe
P6015A 20 kV, 75 MHz high-voltage passive probe
TPA-BNC 14 TekVPI® to TekProbe™ BNC adapter
TEK-DPG TekVPI deskew pulse generator signal source
067-1686-xx Power measurement deskew and calibration fixture
Looking for other probes? Check out the probe selector tool at www.tek.com/probes.

Step 10

Add accessories
Add traveling or mounting accessories

Optional Accessory Description
HC5 Hard carrying case
RM5 Rackmount kit
GPIB to Ethernet adapter Order model 4865B (GPIB to Ethernet to Instrument Interface) directly from ICS Electronics

www.icselect.com/gpib_instrument_intfc.html

Step 11

Select power cord option
Power Cord Option Description
A0 North America power plug (115 V, 60 Hz)
A1 Universal Euro power plug (220 V, 50 Hz)
A2 United Kingdom power plug (240 V, 50 Hz)
A3 Australia power plug (240 V, 50 Hz)
A5 Switzerland power plug (220 V, 50 Hz)
A6 Japan power plug (100 V, 50/60 Hz)
A10 China power plug (50 Hz)
A11 India power plug (50 Hz)
A12 Brazil power plug (60 Hz)
A99 No power cord

Step 12

Protect your investment and your uptime with a service package for your 5 Series B MSO.

Optimize the lifetime value of your purchase and lower your total cost of ownership with a calibration and extended warranty plan for your 5 Series B MSO. Plans range from standard warranty extensions covering parts, labor, and 2-day shipping to Total Product Protection with repair or replacement coverage from wear and tear, accidental damage, ESD or EOS. See the table below for specific service options available on the 5 Series B MSO family of products. Compare factory service plans https://www.tek.com/en/services/factory-service-plans.

Additionally, Tektronix is a leading accredited calibration services provider for all brands of electronic test and measurement equipment, servicing more than 140,000 models from 9,000 manufacturers. With 100+ labs worldwide, Tektronix serves as a global partner, delivering tailored whole-site calibration programs with OEM quality at a market price. View whole site calibration service capabilities https://www.tek.com/en/services/calibration-services.

Add extended service and calibration options
Service Option Description
T3 Three-year Total Product Protection, includes repair or replacement coverage from wear and tear, accidental damage, ESD or Electrical Over-stress plus standard warranty extended to 3 years. All repairs include calibration, firmware updates and 2-day shipping within country. Guarantees faster turnaround time than without coverage.
R3 Standard warranty extended to 3 years. All repairs include calibration, firmware updates and 2-day shipping within country. Guarantees faster turnaround time than without coverage.
C3 Calibration service for 3 years. Includes traceable calibration or functional verification where applicable, for recommended calibrations. Coverage includes the initial calibration plus 2 years of calibration coverage.
T5 Five-year Total Product Protection, includes repair or replacement coverage from wear and tear, accidental damage, ESD or Electrical Overstress plus standard warranty extended to 5 years. All repairs include calibration, firmware updates and 2-day shipping within country. Guarantees faster turnaround time than without coverage.
R5 Standard warranty extended to 5 years. All repairs include calibration, firmware updates and 2-day shipping within country. Guarantees faster turnaround time than without coverage.
C5 Calibration service for 5 years. Includes traceable calibration or functional verification where applicable, for recommended calibrations. Coverage includes the initial calibration plus 4 years of calibration coverage.
D1 Calibration data report
D3 Calibration data report 3 years (with Option C3)
D5 Calibration data report 5 years (with Option C5)

Feature upgrades after purchase

Add feature upgrades in the future
You can easily add functionality after the initial purchase. Node-locked licenses permanently enable optional features on a single product. Floating licenses allow license-enabled options to be easily moved between compatible instruments. Compatible instruments for the floating licenses are 5 Series MSO and 5 Series B MSO models. 
Upgrade feature Node-locked license upgrade Floating license upgrade Description
Add instrument functions SUP5-AFG SUP5-AFG-FL Add arbitrary function generator
SUP5-RL-125M SUP5-RL-125M-FL Extend record length from 62.5 Mpts to 125 Mpts / channel
SUP5-RL-250M SUP5-RL-250M-FL Extend record length from 62.5 Mpts to 250 Mpts / channel
SUP5-RL-500M SUP5-RL-500M-FL Extend record length from 62.5 Mpts to 500 Mpts / channel
SUP5-RL-125MT250M SUP5-RL-125MT250M-FL Extend record length from 125 Mpts to 250 Mpts / channel
SUP5-RL-250MT500M SUP5-RL-250MT500M-FL Extend record length from 250 Mpts to 500 Mpts / channel
SUP5-RL-125MT500M SUP5-RL-125MT500M-FL Extend record length from 125 Mpts to 500 Mpts / channel
Add protocol analysis SUP5-SR8B10B SUP5-SR8B10B-FL 8b/10b serial decoding and analysis
SUP5-SRAERO SUP5-SRAERO-FL Aerospace serial triggering and analysis (MIL-STD-1553, ARINC 429)
SUP5-SRAUDIO SUP5-SRAUDIO-FL Audio serial triggering and analysis (I2S, LJ, RJ, TDM)
SUP5-SRAUTO SUP5-SRAUTO-FL Automotive serial triggering and analysis (CAN, CAN FD, LIN, FlexRay, and CAN symbolic decoding)
SUP5-SRAUTOEN1 SUP5-SRAUTOEN1-FL 100Base-T1 Automotive Ethernet serial analysis
SUP5-SRAUTOSEN SUP5-SRAUTOSEN-FL Automotive sensor serial triggering and analysis (SENT)
SUP5-SRCOMP SUP5-SRCOMP-FL Computer serial triggering and analysis (RS-232/422/485/UART)
SUP5-SRCPHY SUP5-SRCPHY-FL MIPI C-PHY serial analysis (DSI-2, CSI-2)
SUP5-SRCXPI SUP5-SRCXPI-FL CXPI serial decoding and analysis
SUP5-SRDPHY SUP5-SRDPHY-FL MIPI D-PHY (DSI-1, CSI-2 decode and search only)
SUP5-SREMBD SUP5-SREMBD-FL Embedded serial triggering and analysis (I2C, SPI)
SUP5-SRENET SUP5-SRENET-FL Ethernet serial triggering and analysis (10Base-T, 100Base-TX)
SUP5-SRESPI SUP5-SRESPI-FL eSPI serial decoding and analysis
SUP5-SRETHERCAT SUP5-SRETHERCAT-FL EtherCAT serial decoding and analysis
SUP5-SRI3C SUP5-SRI3C-FL MIPI I3C serial triggering and analysis
SUP5-SRMANCH SUP5-SRMANCH-FL Manchester (decode and search only)
SUP5-SRMDIO SUP5-SRMDIO-FL Management Data Input/Output serial decoding and analysis
SUP5-SRNRZ SUP5-SRNRZ-FL NRZ serial decoding and analysis
SUP5-SRONEWIRE SUP5-SRONEWIRE-FL One wire (1-Wire) serial decoding and analysis
SUP5-SRPM SUP5-SRPM-FL Power Management serial triggering and analysis (SPMI)
SUP5-SRPSI5 SUP5-SRPSI5-FL PSI5 serial decoding and analysis
SUP5-SRSDLC​ SUP5-SRSDLC-FL Synchronous Data Link Control Protocol Decode & Search
SUP5-SRSMBUS SUP5-SRSMBUS-FL SMBus serial decoding and analysis
SUP5-SRSPACEWIRE SUP5-SRSPACEWIRE-FL Spacewire serial decoding and analysis
SUP5-SRSVID SUP5-SRSVID-FL Serial Voltage Identification (SVID) serial decoding and analysis
SUP5-SRUSB2 SUP5-SRUSB2-FL USB 2.0 serial bus triggering and analysis (LS, FS, and HS)
SUP5-SREUSB2 SUP5-SREUSB2-FL Embedded USB2 (eUSB2) serial decoding and analysis
Add serial compliance testingAll serial compliance products require option 5B-WIN (SSD with Microsoft Windows 10 operating system) SUP5-AUTOEN-BND N/A Automotive Ethernet compliance, signal separation, PAM3 analysis (requires option 5-DJA), 100BASE-T1 serial decode
SUP5-AUTOEN-SS SUP5-AUTOEN-SS-FL Automotive Ethernet signal separation
SUP5-CMAUTOEN SUP5-CMAUTOEN-FL Automotive Ethernet automated compliance test solution (100BASE-T1 and 1000BASE-T1)

Requires ≥2 GHz bandwidth for 1000BASE-T1 testing

SUP5-CMAUTOEN10 SUP5-CMAUTOEN10-FL Automotive Ethernet (10BASE-T1S Short Reach) automated compliance test solution
SUP5-CMENET SUP5-CMENET-FL Ethernet automated compliance test solution (10BASE-T/100BASE-T/ 1000BASE-T).

Requires ≥1 GHz bandwidth for 1000BASE-T1 testing

SUP5-CMINDUEN10 SUP5-CMINDUEN10-FL Industrial Ethernet (10Base-T1L Long Reach) automated compliance test solution
SUP5-CMUSB2 SUP5-CMUSB2-FL USB2.0 automated compliance test solution.

Requires TDSUSBF USB test fixture

Requires ≥2 GHz bandwidth for high-speed USB testing

Add advanced analysis SUP5-DBLVDS SUP5-DBLVDS-FL LVDS debug and analysis (requires option 5-DJA and 5B-WIN)
SUP5-DJA SUP5-DJA-FL Advanced jitter and eye analysis
SUP5-DPM SUP5-DPM-FL Digital Power Management
SUP5-IMDA 15 SUP5-IMDA-FL1 Inverter Motor Drive Analysis
SUP5-IMDA-DQ01 SUP5-IMDA-DQ0-FL1 DQ0 feature for Inverter Motor Drive Analysis (requires option 5-IMDA)
SUP5-IMDA-MECH1 SUP5-IMDA-MECH-FL1 Mechanical measurements for Inverter Motor Drive Analysis (requires option 5-IMDA)
SUP5-MTM SUP5-MTM-FL Mask and Limit Testing
SUP5-PAM3 SUP5-PAM3-FL PAM3 analysis (requires option 5-DJA)
SUP5-PWR SUP5-PWR-FL Advanced power measurements and analysis
SUP5-PS2 N/A Power solution bundle (5-PWR, THDP0200, TCP0030A, 067-1686-XX deskew fixture)
SUP5-DPMBAS SUP5-DPMBAS-FL Basic Digital Power Management
SUP5-SV-BW-1 SUP5-SV-BW-1-FL Increase Spectrum View Capture Bandwidth to 500 MHz
SUP5-SV-RFVT SUP5-SV-RFVT-FL Spectrum View RF versus Time analysis and trigger
SUP5-UDFLT SUP5-UDFLT-FL User Defined Filter Creation Tool
SUP5-VID SUP5-VID-FL NTSC, PAL, and SECAM video triggering
Add digital voltmeter SUP5-DVM N/A Add digital voltmeter / trigger frequency counter(Free with product registration at www.tek.com/register5mso)

 

Upgrade feature Upgrade Description
Add expansion embedded Windows operating system SSD SUP5B-WIN Add removable SSD with Windows 10 operating system
Add expansion embedded operating system SSD SUP5B-LNX Add removable SSD with embedded operating system

 

Bandwidth upgrades after purchase

Add bandwidth upgrades in the future
You can easily upgrade the analog bandwidth of products after initial purchase. Bandwidth upgrades are purchased based on the number of FlexChannel inputs, the current bandwidth, and the desired bandwidth.

Upgrades up to 1 GHz bandwidth can be performed in the field by installing a software license and a new front panel label. Upgrades to 2 GHz require installation and calibration at a Tektronix authorized service center.

Bandwidth upgrades from 350 MHz or 500 MHz to 1 GHz or 2 GHz also include one TPP1000 1 GHz passive probe per instrument channel.

 

Oscilloscope model owned Bandwidth upgrade product Upgrade option Upgrade option description
MSO54B SUP5B-BW4 5B-BW3T5-4 License; Bandwidth Upgrade for 5 Series B MSO; Upgrade from 350 MHz to 500 MHz bandwidth on a (4) FlexChannel model; Node Locked
SUP5B-BW4 5B-BW3T10-4 License; Bandwidth Upgrade for 5 Series B MSO; Upgrade from 350 MHz to 1 GHz bandwidth on a (4) FlexChannel model; Node Locked
SUP5B-BW4 5B-BW5T10-4 License; Bandwidth Upgrade for 5 Series B MSO; Upgrade from 500 MHz to 1 GHz bandwidth on a (4) FlexChannel model; Node Locked
SUP5B-BW10T204 Bandwidth upgrade; from 1 GHz to 2 GHz on (4) FlexChannel models of 5 Series B oscilloscopes
SUP5B-BW3T204 Bandwidth upgrade; from 350 MHz to 2 GHz on (4) FlexChannel models of 5 Series B oscilloscopes
SUP5B-BW5T204 Bandwidth upgrade; from 500 MHz to 2 GHz on (4) FlexChannel models of 5 Series B oscilloscopes
MSO56B SUP5B-BW6 5B-BW3T5-6 License; Bandwidth Upgrade for 5 Series B MSO; Upgrade from 350 MHz to 500 MHz bandwidth on a (6) FlexChannel model; Node Locked
SUP5-BW6 5B-BW3T10-6 License; Bandwidth Upgrade for 5 Series B MSO; Upgrade from 350 MHz to 1 GHz bandwidth on a (6) FlexChannel model; Node Locked
SUP5B-BW6 5B-BW5T10-6 License; Bandwidth Upgrade for 5 Series B MSO; Upgrade from 500 MHz to 1 GHz bandwidth on a (6) FlexChannel model; Node Locked
SUP5B-BW10T206 Bandwidth upgrade; from 1 GHz to 2 GHz on (6) FlexChannel models of 5 Series B oscilloscopes
SUP5B-BW3T206 Bandwidth upgrade; from 350 MHz to 2 GHz on (6) FlexChannel models of 5 Series B oscilloscopes
SUP5B-BW5T206 Bandwidth upgrade; from 500 MHz to 2 GHz on (6) FlexChannel models of 5 Series B oscilloscopes
MSO58B SUP5B-BW8 5B-BW3T5-8 License; Bandwidth Upgrade for 5 Series B MSO; Upgrade from 350 MHz to 500 MHz bandwidth on a (8) FlexChannel model; Node Locked
SUP5B-BW8 5B-BW3T10-8 License; Bandwidth Upgrade for 5 Series B MSO; Upgrade from 350 MHz to 1 GHz bandwidth on a (8) FlexChannel model; Node Locked
SUP5B-BW8 5B-BW5T10-8 License; Bandwidth Upgrade for 5 Series B MSO; Upgrade from 500 MHz to 1 GHz bandwidth on a (8) FlexChannel model; Node Locked
SUP5B-BW10T208 Bandwidth upgrade; from 1 GHz to 2 GHz on (8) FlexChannel models of 5 Series B oscilloscopes
SUP5B-BW3T208 Bandwidth upgrade; from 350 MHz to 2 GHz on (8) FlexChannel models of 5 Series B oscilloscopes
SUP5B-BW5T208 Bandwidth upgrade; from 500 MHz to 2 GHz on (8) FlexChannel models of 5 Series B oscilloscopes

Tektronix MSO56B 6 channel Oscilloscope

 

Additional information

Bw

350 MHz, 500 MHz, 1 GHz, 2 GHz

Kanaler

6 Channels

Producent

Tektronix

Produktkategori

Oscilloscopes

This website uses cookies. By continuing to use this site, you accept our use of cookies.  Learn more